a2 United States Patent

US009418020B2

(10) Patent No.: US 9,418,020 B2

Waldspurger et al. @45) Date of Patent: *Aug. 16,2016
(54) SYSTEM AND METHOD FOR EFFICIENT (52) US.CL
CACHE UTILITY CURVE CONSTRUCTION CPC GOG6F 12/121 (2013.01); GO6F 11/3447

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

AND CACHE ALLOCATION

Applicant: Cloud Physics, Inc., Mountain View, CA
(US)

Inventors: Carl A. Waldspurger, Palo Alto, CA

(US); Irfan Ahmad, Redwood City, CA

(US); Alexander Garthwaite, South

Hamilton, MA (US); Nohhyun Park,

Redwood City, CA (US)

Assignee: CLOUD PHYSICS, INC., Santa Clara,

CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 15/004,877

Filed: Jan. 22, 2016
Prior Publication Data
US 2016/0140052 A1 May 19, 2016

Related U.S. Application Data

Continuation-in-part of application No. 13/799,942,
filed on Mar. 13, 2013, now Pat. No. 9,336,141, and a
continuation-in-part of application No. 14/315,678,
filed on Jun. 26, 2014.

Provisional application No. 62/106,693, filed on Jan.
22,2015.

Int. Cl1.

GO6F 12/00 (2006.01)
GO6F 12/12 (2016.01)
GO6F 12/08 (2016.01)
GO6F 17/50 (2006.01)
GO6F 11/34 (2006.01)

<= et {oresiny

(2013.01); GOGF 12/0802 (2013.01); GO6F
12/0893 (2013.01); GOGF 12/123 (2013.01);
GO6F 17/5022 (2013.01); GO6F 2212/1021
(2013.01); GO6F 2212/601 (2013.01); GO6F
2212/69 (2013.01)
(58) Field of Classification Search
CPC . GO6F 12/121; GO6F 12/0893; GOG6F 12/123;
GOG6F 2212/1021; GOGF 2212/69; GO6F
12/0802
USPC ottt 711/129
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,952,664 B1* 10/2005 Lahiri GO6F 17/5022
703/13

Primary Examiner — Matthew Bradley
(74) Attorney, Agent, or Firm — Jeffrey Pearce

(57) ABSTRACT

Interaction is evaluated between a computer system cache
and at least one entity that submits a stream of references
corresponding to location identifiers of data storage loca-
tions. The reference stream is spatially sampled by comparing
a hash value of each reference with a threshold value and
selecting only those references whose hash value meets a
selection criterion. Cache utility values are then compiled for
those references. In some embodiments, the compiled cache
values may then be corrected for accuracy as a function of
statistics of those location identifiers over the entire stream of
references and of the sampled references whose hash values
satisfied the selection criterion. Alternatively, a plurality of
caching configurations is selected and the selected references
are applied as inputs to a plurality of caching simulations,
each corresponding to a different caching configuration. A
resulting set of cache utility values is then computed for each
caching simulation.

64 Claims, 13 Drawing Sheets

U.S. Patent Aug. 16, 2016 Sheet 1 of 13 US 9,418,020 B2

FIG. 1

Miss Ratio

0 5 10 15 20
Cache Size {(GB)

U.S. Patent

FIG. 2

Aug. 16, 2016 Sheet 2 of 13

Reference Stream L

o o o o

{ Spatial Sampling Filter: \l
: Compute T; = hash (L,) mod P |
Sample location only if 7, < T

t
N o v e e o o o e o o e oo e

US 9,418,020 B2

- 320

Examine hash table |
for fast lookup

A4

‘ HASH TABLE

Found ?
l 330 -

Update DISTANCE

R TREE ¢l
position in
distance tree

G~ P

distance t

Insert into

ree

{lnsert <L;, T;> into set S
: lf' Sl > Smax:

; Dequeue entries < L;, Tpq: > ﬂ—*
i Lower global threshold T=T,,,.
\ Remove L;from distance tree
}
\

Remove L;from hash table

o
»

PRIORITY

S

~350
QUEUE 7

AL
3 @)
et

QK

|
|
|
/

- ~

Rescale distance D;:
D, := D, /R, where R=T/P

_________ P B

Update histogram with D,

v

REUSE DISTANCE
HISTOGRAM i,

U.S. Patent Aug. 16, 2016 Sheet 3 of 13 US 9,418,020 B2

FIG. 3A

sampling Rate (R}
— Exact MRC

e 30y

T

Miss Ratio

Cache Size {GB)

U.S. Patent Aug. 16, 2016 Sheet 4 of 13 US 9,418,020 B2

FIG. 3B

_@Ess __Rati)

Cache Size (GB)

U.S. Patent Aug. 16, 2016 Sheet 5 of 13 US 9,418,020 B2

FIG. 4

At b ang

US 9,418,020 B2

Sheet 6 of 13

Aug. 16, 2016

U.S. Patent

mv.mwn

SY BORE

{89} azig syor)

g} PG vy

{

i

Dapiesang RBNg -

S "Old

sHEy Seiy

U.S. Patent Aug. 16, 2016 Sheet 7 of 13 US 9,418,020 B2

t25 BEEABASR?

References (M

(N} 21ey HBundweg

FIG. 6

U.S. Patent Aug. 16, 2016 Sheet 8 of 13 US 9,418,020 B2

FIG. 7

100000 -

10000

1000

Memory Usage {MB)

10

O 20 4 50 80 100 120
Trace Number

U.S. Patent Aug. 16, 2016 Sheet 9 of 13 US 9,418,020 B2

FIG. 8
100000 -
Baseline {uﬂsamg
: SHARDS R=001
10000 SHARDS R““wﬂf W wow

SHARDS &,

i

it 3

o] 3
i ;

CPU Usage (sec)
©

0.1

0.01

50 80 100 120
Trace Number

2
Pl
fon
fow
2
5

U.S. Patent Aug. 16, 2016 Sheet 10 of 13 US 9,418,020 B2

FIG. 9

.-+ Exact (unsampled)

£

Cok

Miss Ratio

U.S. Patent Aug. 16, 2016 Sheet 11 of 13 US 9,418,020 B2

FIG. 10

Exact ARC (unsampled)
Sampled A?ﬁ(‘ RESERE S L J—

Miss Ratio

0 10 20 30 40 S0 80 70 B0
Cache Size (GB)

U.S. Patent Aug. 16, 2016 Sheet 12 of 13 US 9,418,020 B2

FIG. 11

-+« Exact {(unsampled)

- = SHARDS {84,,,=8K)

_Miss Ratio

L4

Cache Size (TB)

U.S. Patent Aug. 16, 2016 Sheet 13 of 13 US 9,418,020 B2

FIG. 12

300
L N
CACHE ANALYSIS
< HISTOGRAM
305 40 n 1| cuc
il 370 325
Ve - ™

<Li,- Tl >,. S; Sma\c, T; Tmax, L/
COMPUTATION & DATA
STRUCTURE PROCESSING

s

SPATIAL HASH = DISTANCE
SAMPLING | | TABLE .- TREE (-
L0777 RLTER | |320 330
l 310 .
200\;
¢ x)
100-1 x L 100-2 \ 100-n x
CLIENT CLIENT
OS/HYPERVISOR 100
130 /
VMs APPs
110 120

US 9,418,020 B2

1
SYSTEM AND METHOD FOR EFFICIENT
CACHE UTILITY CURVE CONSTRUCTION
AND CACHE ALLLOCATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority of U.S. Provisional Patent
Application No. 62/106,693, filed 22 Jan. 2015, and is also a
Continuation-in-Part of and claims priority of both U.S.
patent application Ser. No. 13/799,942, filed 13 Mar. 2013,
and U.S. patent application Ser. No. 14/315,678, filed 26 Jun.
2014.

BACKGROUND

Caches designed to accelerate data access by exploiting
locality are pervasive in modern storage systems. Operating
systems (OS’s) and databases maintain in-memory buffer
caches containing “hot” blocks considered likely to be
reused. When an OS needs to access a block, it may first look
in a cache. If the block is cached, there is a “hit” and the OS
can access it right away. If, however, the block is not in the
cache (a “miss”), then the OS must access it using the normal
addressing techniques to retrieve the block from slower
memory or storage. Server-side or networked storage caches
using flash memory are popular as a cost-effective way to
reduce application latency and offload work from rotating
disks. Virtually all storage devices—ranging from individual
disk drives to large storage arrays—include significant caches
composed of RAM or flash memory. Since cache space con-
sists of relatively fast, expensive storage, it is inherently a
scarce resource, and is commonly shared among multiple
clients. As aresult, optimizing cache allocations is important,
and approaches for estimating workload performance as a
function of cache size are particularly valuable.

Cache Utility Curves

Cache utility curves (CUCs) are effective tools for manag-
ing cache allocations. Such curves plot a performance metric
as a function of cache size. FIG. 1 shows an example miss-
ratio curve (MRC, which may also abbreviate miss rate
curve), which plots the ratio of cache misses to total refer-
ences for a workload (y-axis) as a function of cache size
(x-axis). The higher the miss ratio, the worse the perfor-
mance; furthermore, the miss ratio decreases as cache size
increases. MRCs come in many shapes and sizes, and repre-
sent the historical cache behavior of a particular workload.
The MRC example of FIG. 1 illustrates the inherent trade-off:
One can reduce the likelihood of misses by making the cache
larger, but this leads to greater cost to provide the faster
devices that are used for the cache. Instead of evaluating miss
ratios as a function of cache size, some other known systems
evaluate miss rates and thus miss rate curves, which have
analogous properties and can provide similar information to
system designers. Both miss ratio curves and miss rate curves
are thus different choices for CUCs.

Assuming some level of stationarity in the workload pat-
tern at the time scale of interest, its MRC can be used to
predict its future cache performance. An administrator can
use a system-wide miss ratio curve to help determine the
aggregate amount of cache space to provision for a desired
improvement in overall system performance. Similarly, an
automated cache manager can utilize separate MRCs for mul-
tiple workloads of varying importance, optimizing cache
allocations dynamically to achieve service-level objectives.

10

15

20

25

30

35

40

45

50

55

60

65

2

Weaker Alternatives

The concept of a working set, defined as the set of data
accessed during the most recent sample interval, is often used
by online allocation algorithms in systems software. While
working-set estimation provides valuable information, it
doesn’t measure data reuse, nor does it predict the magnitude
of the performance change that can be expected as cache
allocations are varied. Without the type of information con-
veyed in a cache utility curve, administrators or automated
systems seeking to optimize cache allocations are forced to
resort to simple heuristics, or to engage in trial-and-error
tests. Both approaches are problematic.

Heuristics simply don’t work well for cache sizing, since
they cannot capture the temporal locality profile of a work-
load. Without knowledge of marginal benefits, for example,
doubling (or halving) the cache size for a given workload may
change its performance only slightly, or by a dramatic
amount.

Trial-and-error tests that vary the size of a cache and mea-
sure the effect are not only time-consuming and expensive,
but also present significant risk to production systems. Cor-
rect sizing requires experimentation across a range of cache
allocations; some might induce thrashing and cause a precipi-
tous loss of performance. Moreover, long-running experi-
ments required to warm up caches or to observe business
cycles may exacerbate the negative effects. In practice,
administrators rarely have time for this.

Although CUCs are useful for planning and optimization,
existing algorithms used to construct them are computation-
ally expensive. To construct an exact MRC, it is necessary to
observe data reuse over the access trace. Every accessed
location must be tracked and stored in data structures during
trace processing, resulting in large overheads in both time and
space. One technique due to Mattson, et al., (“Evaluation
techniques for storage hierarchies”, IBM Syst. J. 9, 2 (June
1970), 78-117) scans the trace of references to collect a his-
togram of reuse distances. The reuse distance for an access to
a block B is measured as the number of other intervening
unique blocks referenced since the previous access to B. The
number of times a particular reuse distance occurs is collected
while processing the trace, over all possible reuse distances.
Conceptually, for modeling LRU (“Least Recently Used”),
accessed blocks are totally ordered in a stack from most
recent to least recent access. On an access to block B, it:

determines the reuse distance of B as: D=stack depth of B

(for first access to B, D=00),

records D in a reuse-distance histogram, and

moves B to the top of stack.

Standard implementations maintain a balanced tree to
track the most recent references to each block and compute
reuse distances efficiently, and employ a hash table for fast
lookups into this tree. For a trace of length N containing M
unique references, the most efficient implementations of this
algorithm have an asymptotic cost of (N log M) time and (M)
space.

Given the non-linear computation cost and unbounded
memory requirements, it is impractical to perform real-time
analysis in production systems. Even when processing can be
delayed and performed offline from a trace file, memory
requirements may still be excessive. This is especially impor-
tant when modeling large storage caches; in contrast to RAM-
based caches, affordable flash cache capacities often exceed 1
TB, requiring many gigabytes of RAM for traditional MRC
construction.

US 9,418,020 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a cache utility curve.

FIG. 2 is a flowchart that shows the main procedural steps
of a fixed-size embodiment that implements an improved
method for CUC construction; a subset of the steps shown in
this figure also shows a fixed-rate embodiment.

FIGS. 3A-11 are plots showing comparative results of
embodiments of SHARDS either with different parameter
settings, or as compared with various sets of exact trace data,
or both.

FIG. 12 illustrates the main hardware and software com-
ponents of a cache analysis system that implements different
embodiments, as well as how the analysis system may inter-
act with clients, a computer system whose cache is of interest,
and a user/administrator.

DETAILED DESCRIPTION

Disclosed here is a new approach that enables determina-
tion of reuse-distance to construct accurate CUCs using only
modest computational resources. Different embodiments
described here extend and improve on the methods disclosed
by the present inventors in U.S. patent application Ser. No.
14/215,678 (Waldspurger, et al., published as U.S. Published
Patent Application 2014/0310462). For convenience, this
new approach is referred to below as “SHARDS”, for “Spa-
tially Hashed Approximate Reuse Distance Sampling”. In
broad terms, SHARDS employs randomized spatial sam-
pling, implemented by tracking only references to represen-
tative locations, selected dynamically based on a function of
their hash values. In a further embodiment, SHARDS runs in
constant space by lowering the sampling rate adaptively.

The SHARDS method requires several orders of magni-
tude less space and time than exact methods, and is inexpen-
sive enough for practical online MRC construction in high-
performance systems. The dramatic space reductions also
enable analysis of long traces, which is not typically feasible
with exact methods; indeed, embodiments need not be limited
to bounded (for example, time-limited) traces, but may even
be applied to continuous streams, such as might be generated
by long-running workloads. Here, a “trace” is any stream
containing identifiers for memory/storage locations that may
be cached. The “location” L. may be a location such as an
address, or block number, or any other identifier used to
designate a corresponding portion of system memory, or disk
storage, or some other /O device (for example, onboard
memory of a video card, or an address to a data buffer, etc.),
or any other form of device, physical or virtual, whose iden-
tifier is used to create cache entries. Any reference below to
one of these options is by way of example only and is not
intended to be limiting.

Similarly, “data” is also used here to indicate any form of
stored digital information, including “pure” data as well as
instructions, etc. Embodiments of the invention may be used
to provide information to construct either type of CUC, that
is, miss rate curves or miss ratio curves. Unless clear from
context, such as in the description of plots of experimental
results using one type of CUC or the other, it is to be assumed
that embodiments can operate with either type of CUC, even
if only one variant is mentioned in relation to a given example
or description of a feature.

As one example of the efficiency of an embodiment of this
invention, traces that consume many gigabytes of RAM to
construct exact MRCs may require less than 1 MB for accu-
rate approximations. This low cost also enables concurrent
evaluation of different cache configurations (e.g., block size

40

45

55

4

or write policy) using multiple SHARDS instances. Various
embodiments also present a related generalization to non-
LRU policies.

One of many examples of a practical use of SHARDS is in
the context of a commercial I/O caching analytics service for
virtualized environments. One prototype of such a system
streams compressed block 1/O traces for virtual disks from
customer data centers to a cloud-based backend that con-
structed approximate MRCs efficiently. A web-based inter-
face reported expected cache benefits, such as the cache size
required to reduce average 1/O latency by specified amounts.
Running this service, the inventors were able to accumulate a
large number of production traces from customer environ-
ments.

To evaluate embodiments of this invention, the inventors
analyzed both exact and approximate MRCs for more than a
hundred virtual disks from a trace library, plus additional
publicly-available block I/O traces. Averaged across all
traces, the miss ratios of the approximated MRCs, con-
structed using a 0.1% sampling rate, deviated in absolute
value from the exact MRCs by an average of less than 0.02,
i.e., the approximate sampled miss ratio is within two per-
centage points of the value calculated exactly using the full
trace.

Moreover, approximate MRCs constructed using a fixed
sample-set size, with only 8K samples in less than 1 MB
memory, deviated by an average of less than 0.01 from the
exact full-trace values. This high accuracy was achieved
despite dramatic memory savings by a factor ofup to 10,800x
for large traces, with a median of 185x across all traces. The
computation cost was also reduced up to 204x for large traces,
with a median of 22x.

The overall structure and order of the following description
is: The SHARDS routine itself is described, along with an
extended version that runs in constant space. Details of a
novel MRC construction implementation are then examined,
followed by results of an evaluation of SHARDS based on
quantitative experiments on more than a hundred real-world
1/O traces. A system configured to implementation SHARDS
is described. Related work is thereafter discussed, followed
by a summary of conclusions and a discussion of other poten-
tial alternative embodiments and uses.

SHARDS Sampling

SHARDS derived from an investigation of the conse-
quences of computing reuse distances for a randomly
sampled subset of referenced blocks, that is, units of memory
and/or storage that an OS (or any other software that manages
a cache, such as a hypervisor, runtime system, database, key-
value store, etc.) needed to access, either for its own purposes
or on behalf of an application. One result of this investigation
led to a routine based on spatially-hashed sampling. Although
various embodiments are described in the context of storage
MRCs, they can also be applied more generally to approxi-
mate other cache utility curves, with any stream of references
containing virtual or physical location identifiers.

Basic SHARDS

According to an embodiment of the SHARDS method, for
each referenced location L, and with a selected standard hash
function hash, the decision of whether or not to sample L is
based on whether hash(L) satisfies at least one condition. For
example, the condition hash(I.) mod 100<K samples approxi-
mately K percent of the entire location space. Assuming a
reasonable hash function, this effectively implements uni-
form random spatial sampling.

This method has several desirable properties. As required
for reuse distance computations, it ensures that all accesses to
the same location will be sampled, since they will have the

US 9,418,020 B2

5

same hash value. It does not require any prior knowledge
about the system, its workload, or the location address space.
In particular, no information is needed about the set of loca-
tions that may be accessed by the workload, nor the distribu-
tion of accesses to these locations. As a result, SHARDS
sampling is effectively stateless. In contrast, explicitly pre-
selecting a random subset of locations, as in some prior art
systems, may require significant storage, especially if the
location address space is large. Often, only a small fraction of
this space is accessed by the workload, making such pre-
selection especially inefficient. More generally, using the
sampling condition hash(L.) mod P<T, with modulus P and
threshold T, the effective sampling rate is R=T/P, and each
sample represents 1/R locations, in a statistical sense. The
sampling rate may be varied by changing the threshold T
dynamically. When the threshold is lowered from T to T', a
subset-inclusion property is maintained automatically: Each
location sampled after lowering the rate would also have been
sampled prior to lowering the rate; since T'<T, the samples
selected with T' are a proper subset of those selected with T.

Fixed-Rate MRC Construction Embodiment

Conventional reuse-distance algorithms construct an exact
MRC from a complete reference trace. FI1G. 2 illustrates some
of the main features of a fixed-rate embodiment of SHARDS,
but also including additional steps that may be included to
implementation a fixed-size embodiment as well. Although
SHARDS embodiments may modify even some known pro-
cedures, the “rounded” boxes in FIG. 2 are unique to the
fixed-rate and fixed-size embodiments of SHARDS. The ref-
erence stream is monitored, that is, traced, to create a
sequence L, of references.

Although most practical implementations of the invention
will choose to tap and test every reference in the sequence(s)
L issuing from a/the client(s), it would also be possible to
select, for example, every n’th reference of L, or references
selected randomly, or make selections based on other prop-
erties, such as only reads or only writes, only certain block
sizes, etc., in which cases the “stream”, as meant in this
description, is whatever sub-set of the complete reference
sequence is used as the input to the spatial sampling filter 310,
every one of which is then filtered. These references are
filtered (310) with respect to the current threshold T, in par-
ticular, selecting as samples only those references for which
T,=hash (L,,) mod P<T.

To speed lookup of the reference, a hash table 320 may be
queried, although slower data structures may also be used for
lookup. If the reference is found in the table, its position in a
(re-use) distance tree 330 is updated, and a reuse distance
histogram 340 is updated with the reference’s reuse distance
D,, which will have been stored previously in a distance tree
330, which may be included for faster lookup, although any
known data structure may be used to store distances. If the
sampled reference is not already in the hash table 320, how-
ever, its reuse distance is computed in any conventional man-
ner before it is preferably inserted into the distance tree 330.

FIG. 2 also shows a step 335, which may be included in
case a fixed-size embodiment is to be implemented. The
sub-steps relating to such a fixed-size implementation, and
the interaction with a data structure S 350, are described in
further detail below.

For both the fixed-rate and fixed-size embodiments, the
distance D, is then preferably rescaled (step 360, see below
for more detail) and the reuse distance histogram 340 is then
updated with the (rescaled) distance value for the current
location L,. Instead of compiling a histogram, it would also be

10

15

20

25

30

35

40

45

50

55

60

65

6

possible to compile and present the cache utility information
in other ways, such as by directly constructing an MRC for
display for a user, or for an automatic cache-allocation rou-
tine, who/which can then adjust the cache allocation accord-
ingly.

Standard MRC construction routines are computationally
expensive. Consider a reference stream containing N total
references to M unique locations. While an optimized imple-
mentation using efficient data structures requires only O (N
log M) time, it still consumes O (M) space for the hash table
320 and balanced tree 330 used to compute reuse distances.
SHARDS, however, can be used to construct an approximate
MRC in dramatically less time and space. With a fixed sam-
pling rate R, the expected number of unique sampled loca-
tions becomes R-M. Assuming the sampled locations are
fairly representative, the total number of sampled references
is reduced to approximately R-N. As shown below, for typical
workloads, even a value for R as low as R=0.001 yields very
accurate MRCs, using memory and processing resources that
are orders of magnitude smaller than conventional
approaches.

Fixed-Size MRC Construction Embodiment

Fixed-rate MRC construction achieves a radical reduction
in computational resource requirements. Nevertheless, even
with a low, constant sampling rate, space requirements may
still grow without bound, along with the total number of
unique locations that must be tracked. For memory-con-
strained environments, such as production cache controller
firmware where MRCs could inform cache allocation deci-
sions, it is desirable to place an upper bound on memory size.

An additional issue is the choice of an appropriate sam-
pling rate, R, since the accuracy of MRC approximation using
spatial sampling also depends on N and M. When these values
are small, it is preferable to use a relatively large value for R
(such as 0.1) to improve accuracy. When these values are
large, it is preferable to use a relatively small value of R (such
as 0.001), to avoid wasting or exhausting available resources.
Weighing these tradeoffs is difficult, especially with incom-
plete information. This suggests that accuracy may depend
more on an adequate sample size than a particular sampling
rate. This observation motivates an extended version of
SHARDS that constructs an MRC in (1) space and O (N)
time, regardless of the size or other properties of its input
trace.

Sampling Rate Adaptation

An appropriate sampling rate may be determined automati-
cally, that is, the rate need not be specified in all implemen-
tations. In this embodiment, the sampling rate is thus lowered
adaptively, in order to maintain a fixed bound on the total
number of sampled locations that are tracked at any given
point in time. The sampling rate may be initialized to a high
value, and lowered gradually as more unique locations are
encountered. This approach leverages the subset-inclusion
property maintained by SHARDS as the rate is reduced.

Initially, the sampling rate may be set to a high value, such
as R,=1.0, the maximum possible value. This may be imple-
mented by using a sampling condition of the form hash(L)
mod P<T, and setting the initial threshold T=P, so that every
location I will be selected. In practice, the inventors have
found that setting R,=0.1 is sufficiently high for nearly any
practical workload, although this is of course a design choice.
Note that it would be possible to use an equivalent threshold
condition that differs from the one shown by including one or
more scaling constants, using a< operator instead of <, refor-
mulating the condition as hash(L) mod P*>T, where P*=1-P,

US 9,418,020 B2

7

etc., but these functions are all equivalent to the one discussed
primarily here and are simple and obvious reformulations of
the same inventive concept.

The goal of operating in constant space implies that the
system (such as one or more software modules comprising
executable code stored in a non-transitory medium within a
computer) cannot continue to track all sampled references. As
shown in FIG. 2, a new auxiliary data structure 350 may
therefore be introduced to maintain a fixed-size set S with

cardinality ISI. Each element of S is a tuple (L,, T,) consist-
ing of an actively-sampled location L,, and its associated
threshold value, T,=hash(L,) mod P. Let s, ,, denote the maxi-
mum desired size IS| of set S, that is, s,,,, is a constant
representing an upper bound on the number of actively
sampled locations. S can be implemented efficiently as a
priority queue 350, ordered by the tuple’s threshold value.
When the first reference to a location L that satisfies the
current sampling condition is processed, it is a cold miss,
since it has never been resident in the cache. In this case, L is
not already in S, so it must be added to the set. If, after adding
L, the bound on the set of active locations would be exceeded,
such that ISI>s,, ., then the size of S must be reduced. The

element (L, T,) with the largest threshold value T,, . is
removed from the set, using for example a priority-queue
dequeue operation. The threshold T used in the current sam-
pling condition is reduced to T,, ., effectively reducing the
sampling rate from R_,~T/P to a new, strictly lower rate
R,,.,=T,..:/P, narrowing the criteria used for future sample
selection.

The corresponding location L; is also removed from all
other data structures, such as the hash table 320 and tree,
which may be found even in prior art implementations. If any
additional elements of S have the same threshold T then
they are also removed from S in the same manner.
Histogram Count Rescaling

As with fixed-rate sampling, reuse distances must be scaled
by 1/R to reflect the sampling rate. An additional consider-
ation for the fixed-size case is that R is adjusted dynamically.
As the rate is reduced, the counts associated with earlier
updates to the reuse-distance histogram 340 (found even in
conventional Mattson-type systems, as mentioned above)
need to be adjusted. Ideally, the effects of all updates associ-
ated with an evicted sample should be rescaled exactly. Since
this would incur significant space and processing costs, how-
ever, embodiments of the invention preferably apply an
approximation.

When the threshold is reduced, the count associated with
each histogram bucket is scaled by the ratio of the new and old
sampling rates, R,,.../R,,, which is equivalent to the ratio of
the new and old thresholds, T,,,./T,,, Rescaling makes the
simplifying assumption that previous references to an evicted
sample contributed equally to all existing buckets. While this
is unlikely to be true for any individual sample, it is nonethe-
less a reasonable statistical approximation when viewed over
many sample evictions and rescaling operations. Rescaling
ensures that subsequent references to the remaining samples
in S have the appropriate relative weight associated with their
corresponding histogram bucket increments.

Conceptually, rescaling should occur immediately each
time the current sampling threshold T is reduced. In practice,
to avoid the expense of rescaling all histogram counts on
every threshold change, it is instead preferably performed
incrementally. This is accomplished efficiently by storing
T, 000 With each histogram bucket, representing the sampling
threshold in effect when the bucket was last updated. When
incrementing a bucket count, if T, ..,=T, then the existing

maxs

25

30

35

40

45

55

8

count is first rescaled by T/T,, ., the count is incremented,
and T, .., 1s set to T. During the final step in MRC construc-
tion, when histogram buckets are summed to generate miss
ratios, any buckets for which T,,, .1 should be similarly
rescaled.

One embodiment used fixed-point values encoded as
scaled integer values for histogram bucket counts. Floating-
point (FP) was avoided because this is not typically used in
kernel-mode code (to avoid saving/restoring FP registers),
and because some low-end controller processors don’t have
hardware support for FP. An alternative is to use floating-
point representations for histogram bucket counts, however,
but then to use +1/T (or equivalently, +1/R) for increments.
Note that with this implementation, there’s no need for res-
caling, since all increments will be in the same units, with
later increment amounts growing larger as the threshold is
decreased dynamically. New updates will therefore count for
more than old ones, which is analogous to scaling down the
relatively old ones.

Design and Implementation

Many different embodiments of SHARDS may be imple-
mented based on existing reuse-distance algorithms, each of
which represents a different trade-off choice involving space
efficiency. Below are described aspects of both a fixed-rate
and fixed-size MRC construction implementation. Consider-
ations for modeling various cache policies are also discussed.
Fixed-Rate Implementation

To facilitate comparison of this embodiment of the inven-
tion with a known baseline, the inventors started with the
sequential version of the open-source C implementation of
PARDA. See, for example, Niu, Q., et al., “PARDA: A fast
parallel reuse distance analysis algorithm”, Proceedings of
the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium, Washington, D.C., USA, 2012),
IPDPS ’12, IEEE Computer Society, pp. 1284-1294. PARDA
takes a trace file as input, and performs offline reuse distance
analysis, yielding an MRC.

In experimental tests, the fixed-rate embodiment of this
invention leveraged two key data structures: a hash table that
maps a location to the timestamp of its most recent reference,
and a splay tree (see Sleator, D., et al., “Self-adjusting binary
search trees. J. ACM 32, 3, July 1985, pp. 652-686; and
Smaragdakis, Y., et al., “The EELRU adaptive replacement
algorithm. Perform. Eval. 53, 2 (2003), pp. 93-123) that is
used to compute the number of distinct locations referenced
since this timestamp. First, each referenced location read
from the trace file is hashed, and processed only if it meets the
specified sampling condition hash(L.) mod P<T. For effi-
ciency, the modulus P was set to a power of two (for example,
in one case P=2>*, providing sufficient resolution to represent
very low sampling rates, while still avoiding integer overflow
when using 64-bit arithmetic for scaling operations) and
“mod P was replaced with the less expensive bit-wise mask
operation “& (P-1)". For a given sampling rate R, the thresh-
old T was set to round(RP). For the hash function, the inven-
tors used the public domain C implementation of Mur-
murHash3. The inventors also experimented with other hash
functions, including a fast pseudo-random number generator,
and found that they yielded nearly identical results.

Next, computed reuse distances were adjusted to reflect the
sampling rate. Each raw distance D was then divided by R to
yield the appropriately scaled distance D=R. Since R=T/P, the
scaled distance (D-P)/T was computed efficiently using an
integer shift and division.

FIG. 3A presents an example application of fixed-rate
SHARDS, using a real-world storage block I/O trace (a Cus-
tomer VM disk trace t04, which also appears later in FIG. 5).

US 9,418,020 B2

9

In FIGS. 3A and 3B, MRCs are constructed for a block I/O
trace containing 69.5 M references to 5.2 M unique blocks,
using fixed-rate SHARDS (FIG. 3A), varying R from
0.00001 to 0.1, and fixed-size SHARDS (FIG. 3B), varying
S, from 128 to 32K. The exact MRC was constructed using
the unsampled, full-trace PARDA baseline. Five approximate
MRC:s are plotted for different fixed sampling rates, varying
R between 0.00001 and 0.1, using powers of ten. Note that the
approximate curves for R=0.001 are nearly indistinguishable
from the exact MRC.
Fixed-Size Implementation

With a constant memory footprint, fixed-size SHARDS is
suitable for online use in memory-constrained systems, such
as device drivers in embedded systems. To explore such appli-
cations, the inventors developed a new implementation, while
still paying attention to optimizing for space efficiency.

Since all data structure sizes were known up-front in the
experiments, memory was allocated only during initializa-
tion. In contrast, other implementations may perform a large
number of dynamic allocations for individual tree nodes and
hash table entries. A single, contiguous allocation is faster,
however, and enables further space optimizations. For
example, if the maximum number of samples s,,, ., is bounded
by 64K, “pointers” can be represented compactly as 16-bit
indices instead of ordinary 64-bit addresses. Like PARDA,
this implementation leveraged Sleator’s public-domain splay
tree code, although this was simply one possible design
choice. In addition to using a splay tree for computing reuse
distances, however, the inventors employed a second splay
tree to maintain a priority queue representing the sample set
S, ordered by hash threshold value. Mapping locations to
splay tree nodes was done via a conventional hash table that
used chaining for collisions. As an additional space optimi-
zation, references between data structures were encoded
using small indices instead of general-purpose pointers.

The combined effect ofthese space-saving optimizations is
summarized in Table 1, which reports the per-sample sizes for
key data structures.

TABLE 1

Fixed-size SHARDS Data Structure Sizes.
Size (in bytes) used to represent elements of key data
structures, for both 16-bit and 32-bit values of s

Data structure element S <O04K S max <64G
hash table chain pointer 2 4
hash table entry 12 16
reference splay tree node 14 20
sample splay tree node 12 20
total per-sample size 40 60

Additional memory was needed for the output histogram—
each bucket consumed 12 bytes to store a count and the update
threshold T,,, .., used for rescaling. For example, with
S,,=8K, the aggregate overhead for samples was found to be
only 320 KB. Using 10K histogram buckets, providing high
resolution for evaluating cache allocation sizes, consumed
another 120 KB. Even when code size, stack space, and all
other memory usage were considered, the entire measured
runtime footprint remained smaller than 1 MB, making this
implementation practical even for extremely memory-con-
strained execution environments.

FIG. 3B presents results of an example application of
fixed-size SHARDS, using the same trace as FIG. 3A. Five
approximate MRCs are plotted for different fixed sample
sizes, varying s,,,, between 128 and 32K, using factors of

max

10

20

25

40

45

50

55

10

four. Note that the approximate curves fors,,,,,=2K are nearly
indistinguishable from the exact MRC.
Modeling Cache Policy

PARDA uses a simple binary trace format: a sequence of
64-bit references, with no additional metadata. Storage 1/0
traces typically contain richer information for each reference,
including a timestamp, access type (read or write), and a
location represented as an offset and length. For the experi-
ments the inventors conducted to evaluate embodiments of
this invention, the inventors converted 1/0 block traces to the
simpler PARDA format, assumed a fixed cache block size,
and ignored the distinction between reads and writes. This
effectively modeled a simple LRU policy with fixed access
granularity, where the first access to a block is counted as a
miss.

Other SHARDS implementations reflect different caching
policies. For example, on a write miss to a partial cache block,
a write-through cache may first read the entire enclosing
cache block-sized region from storage. The extra read over-
head caused by partial writes can be modeled by maintaining
separate histograms for ordinary reads and reads induced by
partial writes. Other write-through caches manage partial
writes by tracking residency at sub-block granularity, which
can be modeled using known reuse-distance techniques. See,
for example, Thompson, J. G., et al., “Efficient (stack) algo-
rithms for analysis of writeback and sector memories”, ACM
Trans. Comput. Syst. 7, 1 (January 1989),78-117.In all cases,
hash-based spatial sampling as used in embodiments of
SHARDS proved to be extremely effective.

SHARDS MRC Application

Efficiently computing a CUC (that is, miss ratio curve or
miss rate curve) provides valuable analytic information, but,
ultimately, there is of course a practical use. A CUC repre-
sents choices, or trade-offs, between the size of cache allo-
cated or architected vs the frequency of cache misses and thus
inefficiency. Given a CUC created by any embodiment of the
invention, the system designer may choose an appropriate
cache size, either allocated or architected, assuming that the
actual reference stream will b eat least approximately the
same as the stream used to create the CUC. The designer, or
some other entity, may then sample the actual reference
stream periodically, generate and analyze the CUC for that
stream, and determine if a different cache allocation would
better suit the actual or changed conditions.

Alternate Use of MRC

Note that, given an MRC or reuse-distance histogram, it is
possible to generate a sequence of references that results in
the same histogram or MRC. It is also possible to generate a
trace from a reuse distance sequence. (These transformations
are one-to-many, which means one can generate many traces
with same MRC.) The resulting “synthetic” trace will exhibit
the same temporal locality property as the original trace but
the compression ratio would be that of the effective sampling
rate. Additionally, one can enforce additional constraints
when synthesizing these traces, such that additional proper-
ties of the original trace are maintained, for example, read-
write ratio, request size, spatial locality, etc. Such an appli-
cation may be useful for maintaining a space-efficient library
of different workloads for use in testing various properties of
systems, without the cost of keeping the full traces, which are
several orders of magnitude larger.

Experimental Evaluation

The inventors conducted a series of experiments with over
a hundred real-world 1/O traces collected from a commercial
caching analytics service for virtualized environments.
Below is described first the data collection system; thereafter,
the trace files used are characterized. Next is presented an

US 9,418,020 B2

11

evaluation of the accuracy of approximate MRCs. Finally,
results of performance experiments are presented that dem-
onstrate the space and time efficiency of our implementa-
tions.
Data Collection

The inventors used a Software-as-a-Service caching ana-
Iytics service designed to collect block I/O traces for VMware
virtual disks in customer data centers running the VMware
ESXi hypervisor. A user-mode application, deployed on each
ESXi host, coordinated with the standard VMware vscsiStats
utility to collect complete block I/O traces for virtual machine
(VM) virtual disks. A web-based interface allowed particular
virtual disks to be selected for tracing remotely.

Compressed traces were streamed to a cloud-based back-
end to perform various storage analyses, including offline
MRC construction using SHARDS. If the trace was not
needed for additional storage analysis, SHARDS sampling
was performed locally, obviating the need to stream full
traces. Ideally, SHARDS should be integrated directly with
the kernel-mode hypervisor component of vscsiStats for
maximum efficiency, enabling continuous, online reuse-dis-
tance analysis. This is also an option for general implemen-
tations of embodiments of SHARDS.
Trace Files

The inventors used 106 week-long vscsiStats traces, col-
lected by the caching analytics service from virtual disks in
production customer environments. These traces represented
VMware virtual disks with sizes ranging from 8 GB to 34 TB,
with a median of 90 GB. The associated VMs were a mix of
Windows and Linux, with up to 64 GB RAM (6 GB median)
and up to 32 virtual CPUs (2 vCPUs median). In addition, the
inventors included several publicly-available block /O traces
from the SNIA IOTTA repository. The inventors used a dozen
week-long enterprise server traces collected by Microsoft
Research Cambridge, as well as six day-long server traces
collected by FIU. See Koller, R., et al., “I/O deduplication:
Utilizing content similarity to improve /O performance”,
Trans. Storage 6, 3 (September 2010), pp. 13:1-13:26. In
total, this provided a diverse set of 124 real-world block I/O
traces to evaluate the accuracy and performance of SHARDS
compared to prior art exact methods.
Accuracy

The inventors analyzed the accuracy of MRCs constructed
using SHARDS by comparing them to corresponding exact
MRCs without sampling. Differences between the approxi-
mate and exact curves were measured over a wide range of
sampling parameters. Numerous MRC plots are shown in the
Figures as visual examples of SHARDS’ accuracy.
Parameters

The SHARDS system may support many configuration
parameters. In the experiments, the inventors specified, for
example, a 16 KB cache block size, so thata cache miss would
read from primary storage in aligned, fixed-size 16 KB units;
typical storage caches in commercial virtualized systems
employ values between 4 KB and 64 KB. As discussed above,
reads and writes were treated identically, effectively model-
ing a simple LRU cache policy. By default, the inventors
specified a histogram bucket size of 4K cache blocks, so that
each bucket represented 64 MB. Fixed-rate sampling is char-
acterized by a single parameter, namely, the sampling rate R,
which the inventors varied between 0.0001 and 0.1 using
powers of ten. Fixed-size sampling has two parameters: the
sample set size, s,,,,, and the initial sampling rate, R,. The
inventors varied s,,,, using powers of two between 64 and
32K, and use R,=0.1, since this rate is sufficiently high to
work well with even small traces.

10

15

20

25

30

35

40

45

50

55

60

65

12

Error Metric

To analyze the accuracy of SHARDS, the inventors con-
sidered the difference between each approximate MRC, con-
structed using hash-based spatial sampling, and its corre-
sponding exact MRC, generated from a complete reference
trace. An intuitive measure of this distance, also used to
quantify error in related work, is the mean absolute difference
or error (MAE) between the approximate and exact MRCs,
evaluated at several different cache sizes. This difference is
between two values in the range [0, 1], so an MAE of 0.01
represents 1% of that range.

FIG. 4 illustrates the error analysis, with box plots showing
the MAE metric for a wide range of fixed-rate and fixed-size
sampling parameters. The top and the bottom of each box in
FIG. 4 represent the first and third quartile values (Q,, Q;) of
the error. The thin whiskers represent the min and max error,
excluding outliers. Outliers, represented by dots, are the val-
ues larger than Q;+1.5xIQR, where IQR=Q;-Q),. For each
trace, this distance was computed over all discrete cache
sizes, at 64 MB granularity (corresponding to all non-zero
histogram buckets). Overall, the average error proved to be
exceptionally small, even for low sampling rates and small
sample sizes. Fixed-rate sampling with R=0.001, for
example, resulted in approximate MRCs with a MAE of less
than 0.02; most exhibited an MAE bounded by 0.05. The error
for fixed-rate SHARDS typically has larger variance than
fixed-size SHARDS, indicating that accuracy is better con-
trolled via sample count than sampling rate. For fixed-size
SHARDS with s,,,,=8K, the MAE was found to be 0.0072,
with a worst-case of 0.078. Aside from a few outliers, error
was bounded by 0.021.

Using Reference Estimates to Reduce Error

In cases where SHARDS exhibited non-trivial error rela-
tive to an exact MRC, the inventors found that a coarse “‘ver-
tical shift” often accounted for most of the difference, while
finer features were modeled accurately. One embodiment of
SHARDS therefore incorporates an adjustment that, in such
cases, improves accuracy significantly; this embodiment is
referred to here as SHARDS,, ;.

Spatial sampling selects a static set of blocks. If the
dynamic behavior of the sample set differs too much from that
of the complete trace, the weights of the sums of histogram
buckets (or of any other structure used to compile the cache
utility values) and the total count of accesses from the reuse
histogram will be off, skewing the resulting MRC. For
example, excluding too many or too few very hot blocks
biases dynamic access counts. Ideally, the average number of
repetitions per block should be the same for both the sample
set and the complete trace. This happens when the actual
number of sampled references, N, matches the expected
number, E[N_]=N-R. When this does not occur, it will gener-
ally be because the sample set contains the wrong proportion
of frequently accessed blocks. In this embodiment, a correc-
tion of (E[N,]-N,) is therefore added to the first histogram
bucket before computing final miss ratios. The adjustment
embodied in SHARDS, involves adding the difference,
E[N,]-N,, to the first histogram bucket before computing
final miss ratios.

The results of this adjustment, included in SHARDS, ;;, are
illustrated in FIGS. 4 and 5. Note that it would also be pos-
sible to similarly adjust histogram buckets other than only the
first, even all of the buckets, or any sub-set of the buckets.
Adjustment of only the first bucket, however, is the basis of
the results shown, by way of example only, in the figures. If
the adjustment leads to any prefix sums becoming negative,
this can be dealt with, for example, simply by treating them as
being zero.

US 9,418,020 B2

13

To better understand this correction, note that the expected
value for the number of samples is simply the total number of
references in the trace (N), multiplied by the sampling rate
(R). For example, if the system samples 0.1% of blocks (via
spatial hashing), and the samples are representative, then if
there are one million references, the system can expect one
thousand to be sampled. By adding the adjustment at the end,
after the histogram has already been constructed, the system
knows N. It also knows R, since it was specified. For fixed-
rate SHARDS, R is specified directly. For fixed-size
SHARDS, where the sampling rate adapts, the system may
use the final sampling rate as R, and N is the sum of all of the
bucket counts (which have already been rescaled to reflect
sampling rate changes). The system will therefore have all of
the information needed to compute R*N-N_ and perform the
adjustment.

FIG. 4 illustrates that the error with SHARDS,, ,; is even
lower than with “normal” SHARDS: Across all 124 traces,
the adjustment reduced the median fixed-size SHARDS error,
with s,,,,=8K t0 0.0027, and the worst-case to 0.017, factors
of'nearly 3x and 5x, respectively. Excluding the two outliers,
the MAE was bounded at 0.012. Surprisingly, with just 128
samples, the median MAE was only 0.012.

A second alternate approach assumes that the average ratio
of references to unique locations is roughly the same for the
sampled and unsampled cases. Let M denote the number of
unique references, with M, and M, indicating, respectively,
the total and sampled number of unique references. (In fixed-
size embodiments, M, will be the same as s,,,,..) First, deter-
mine N, and also M, (for example, by using a probabilistic
counter such as Hyperl.ogl.og to count the number of distinct
elements in the complete stream). From the sampled reuse
histogram, compute N_. The number of unique blocks in the
sample set, M, is then given from the size of the sample set
since it consists of that unique set of blocks. When the
sampled and unsampled cases agree, it can then be assumed
that N/M,=N/M.,. If this is not true, then the system may
compute k where N,/M,=(N_+k)/M, and add k to the value of
the smallest bucket in the sampled reuse histogram. Solving
for k, k should be (N,*M_—M,*N_)/M,. The system may then
do a prefix summation and normalization to generate the
sampled MRC.

Looking at the two approaches, the first can be simplified.
Rather than scale N, up to get the number of expected refer-
ences in the complete trace, one can scale N, down to what the
sample set should have generated: the delta (k) becomes
(N*R-M,). In addition, if the sampling rate R is roughly
M,/M,, then the first approach’s equation for k is (N,*M —
M,*N,) or (N,*M_~-N_*M,/M,. Alternatively, the second
approach’s equation of (N, *M,-M,*N,)/M, can be simplified
to (N,*M/M,-N;). This shows that the two approaches are
equivalent since R is equivalent to M/M,.

In general, the correction involves aligning the sampled
histogram’s summary statistics with those of the complete
trace by ensuring that the number of repetitions per location is
the same for the sample-set-derived histogram and for that of
the complete trace. In general, the correction may be based on
the difference between any predetermined statistic computed
over the complete trace, and the same statistic computed over
the sampled subset. In the examples described above, this is
done by modifying the bucket counts in the sampled reuse
distance histogram so that they sum to the expected number of
references for a sample-set that size. The modification is
preferably done to the lowest bucket, since most of the error
is in either over- or undersampling those blocks that are most
frequently accessed (and so have the smallest reuse-dis-
tances).

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Detection of bias or divergence between the statistical
behavior of the sampled and unsampled cases can be used in
other ways to improve accuracy. In another approach, one can
generate N separate sample sets and reuse distance histo-
grams, each using its own hash function for block selection.
One can then compare which of the sample sets” outputs most
closely match the behavior of the complete, unsampled case.
For example, this comparison could choose the sample set
whose references-to-unique-locations most closely matches
the unsampled case. That ratio could be estimated using the
threshold as in the first approach above or through directly
estimating as is done in the second approach. Having chosen
the best matching sample set, one can then apply additional
corrections as outlined above.

Example MRCs

The quantitative error measurements revealed that, for
nearly all traces, with fixed-size sampling at s,,, =8K, (the
effective sampling rates appear in parentheses), the miss
ratios in the approximate MRCs deviated only slightly from
the corresponding exact MRCs. FIG. 5 plots 35 approximate
MRCs, together with the matching exact curves; note that, in
most cases, the curves are nearly indistinguishable. Trace
names are shown for three public MSR traces (see Naray-
anan, D, et al., “Write off-loading: Practical power manage-
ment for enterprise storage”, Trans. Storage 4, 3 Nov. 2008,
10:1-10:23); others are anonymized as t00 through t31. In all
cases, the location of prominent features, such as steep
descents, appear faithful. Each plot is annotated with the
effective dynamic sampling rate, indicating the fraction of
10s processed, including evicted samples. This rate reflects
the amount of processing required to construct the MRC.
SHARDS,, ,, thus effectively corrected all cases with visible
error. For trace t31, the worst case over all 124 traces for
SHARDS, error was still reduced from 0.078 to 0.008.
Sampling Rate Adaptation

Choosing a sampling rate that achieves high accuracy with
good efficiency is challenging. The automatic rate adaptation
of fixed-size SHARDS is advantageous because it eliminates
the need to specify R. FIG. 6 plots R as a function of reference
count for four diverse traces: 108, t04, 127, and t25 from FIG.
5. For each, the sampling rate started at a high initial value of
R,=0.1, and was lowered progressively as more unique loca-
tions were encountered. The figure shows that SHARDS
adapts automatically for each of the traces, which contain
significantly different numbers of unique references. After 50
million references, the values of R for these traces were
0.0002, 0.0016, 0.0032, and 0.0111. The total number of
samples processed, including evictions from the fixed-size
sample set S, is given by the area under each curve.

Quantitative experiments thus confirmed that, for nearly all
workloads, SHARDS yields accurate MRCs, in much less
time and space than conventional exact algorithms. While the
accuracy achieved with high sampling rates may not be sur-
prising, success with very low rates, such as R=0.001, was
unexpected. Even more extraordinary is the ability to con-
struct accurate MRCs for a broad range of workloads, using
only a small constant number of samples, such as s,,,,,=8K, or
even s,,,.=256.

Performance

The inventors conducted performance experiments in a
VMware virtual machine, using a 64-bit Ubuntu 12.04 guest
running Linux kernel version 3.2.0. The VM was configured
with 64 GB RAM, and 8 virtual cores, and executed on an
under-committed physical host running VMware ESXi 5.5,
configured with 128 GB RAM and 32 AMD Opteron x86-64
cores running at 2 GHz.

US 9,418,020 B2

15

To quantify the performance advantages of SHARDS over
exact MRC construction, the inventors used a modern high-
performance reuse-distance algorithm from the open-source
PARDA implementation as a baseline. Although the main
innovation of PARDA is a parallel reuse distance routine, the
inventors used a known sequential “classical tree-based stack
distance” baseline. The PARDA parallelization technique
would likely also result in further performance gains for
SHARDS.

Space

To enable a fair comparison of memory consumption with
SHARDS, the inventors implemented minor extensions to
PARDA, adding command-line options to specify the number
of output histogram buckets and the histogram bucket width.
Code was also added to obtain accurate runtime memory
usage. All experiments were run over the full set of traces
described above in the “Trace Files” section. Each run was
configured with 10 thousand histogram buckets, each 64 MB
wide (4K cache blocks of size 16 KB), resulting in an MRC
for cache allocations up to 640 GB.

Sequential PARDA served as a baseline, representing an
efficient, exact MRC construction algorithm without sam-
pling. Fixed-rate SHARDS, implemented via the code modi-
fications described in the “Fixed-Rate Implementation” sec-
tion above, was configured with R=0.01 and R=0.001.
Finally, the new space-efficient fixed-size SHARDS imple-
mentation, presented in the “Fixed-Size Implementation”
section above, was run with s, , =8K and R,=0.1. FIG. 7
illustrates the memory usage for each algorithm over the full
set of traces, ordered by baseline memory consumption, for
an unsampled baseline, with fixed-rate SHARDS (R=0.01,
0.001), and fixed-size SHARDS (s,,,,=8K). The drastic
reductions with SHARDS required the use of a logarithmic
scale. As expected, for traces with large numbers of unique
references, the memory required for fixed-rate SHARDS is
approximately R times as big as the baseline. With much
smaller traces, fixed overheads dominate. For fixed-size
SHARDS, the runtime footprint remained approximately 1
MB for all runs, ranging from 964 KB to 1,044 KB, with an
average of 974 KB, yielding a savings of up to 10,800x for
large traces and a median of 185x across all traces.

Time

FIG. 8 plots the CPU usage measured for the same runs
described above, ordered by baseline CPU consumption. In
FIG. 8, runtime was measured (in seconds, log scale) for an
unsampled baseline, with fixed-rate SHARDS (R=0.01,
0.001), and fixed-size SHARDS (s,,,,=8K). The processing
time reductions with SHARDS were so great that a logarith-
mic scale is used. Fixed-rate SHARDS with R=0.01 resulted
in speedups over the baseline ranging from 29x to 449x, with
amedian of 75x. For R=0.001, the improvement ranged from
41x to 1,029%, with a median of 128x. For short traces with
relatively small numbers of unique references, fixed over-
heads dominated, limiting speedups to values lower than
implied by R.

Fixed-size SHARDS with s,,,,=8K and R,=0.1 incurs
more overhead than fixed-rate SHARDS with R=0.01. This is
due to the non-trivial work associated with evicted samples as
the sampling rate adapts dynamically, as well as the cost of
updating the sample set priority queue. Nonetheless, fixed-
size SHARDS still achieved significant speedups over the
baseline, ranging from 6x to 204x, with a median of 22x. In
terms of throughput, for the top three traces ordered by CPU
consumption in FIG. 8, fixed-size SHARDS processes an
average of 15.4 million references per second.

10

15

20

25

30

35

40

45

50

55

60

65

16
MRCs for Mixed Workloads

The VM-based traces discussed above represent single-
machine workloads, while the 1Os received by storage arrays
are typically an undistinguished, blended mix of numerous
independent workloads. FIG. 9 demonstrates the accuracy of
fixed-size SHARDS using a relative-time-interleaved refer-
ence stream combining all 32 virtual disk traces (100 . . . t31)
shown in FIG. 5. With s,,, =8K, SHARDS exhibited a small
MAE of 0.008 despite being 32,000x more space-efficient.
The high accuracy and extremely low overhead provided
additional confidence that this invention finally provides con-
tinuous, practical online MRC construction and analysis for
production storage arrays. FIG. 9 illustrates exact and
approximate MRCs for merged trace interleaving 4.3 G10s to
509 M unique blocks from 32 separate virtual disks.
Non-LRU Replacement Policies

SHARDS as described above constructs MRCs for a cache
using an LRU replacement policy. The same underlying hash-
based spatial sampling approach may be applied, however,
for simulating other, non-stack-based policies, such as LIRS
(Jiang, S., et al., “LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache per-
formance”, Proceedings of the 2002 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, New York, N.Y., USA, 2002, SIGMET-
RICS 02, ACM, pp. 31-42); ARC (Megiddo, N, et al,, “A
self-tuning, low overhead replacement cache”, Proceedings
of the 2nd USENIX Conference on File and Storage Tech-
nologies, Berkeley, Calif., USA, 2003, FAST *03, USENIX
Association, pp. 115-130); (Bansal, S., et al., “CAR: Clock
with adaptive replacement”, Proceedings of the 3rd USENIX
Conference on File and Storage Technologies, Berkeley,
Calif., USA, 2004, FAST *04, USENIX Association, pp. 187-
200); or Clock-Pro (Jiang, S., et al., “Clock-pro: An effective
improvement of the clock replacement”, Proceedings of the
Annual Conference on USENIX Annual Technical Confer-
ence, Berkeley, Calif.,, USA, 2005, ATEC ’05, USENIX
Association, pp. 35-35). SHARDS may be used even with
other stack-based methods than LRU. For example, cache
entries could be sorted according to MRU, that is, most
recently used, or by frequency instead of recency, such as
according to a LFU (Least Frequently Used) policy.

By way of example, FIG. 10 illustrates the results of a
scaled-down ARC simulation, with exact and approximate
MRCs for VM disk trace t04. Note that ARC is just one
example of an alternate, non-L.RU policy that can be informed
by multiple instances of a “simplified” embodiment; other
examples of such policies are mentioned in the preceding
paragraph, and still others are also known in the art. In FIG.
10, each curve plots one hundred separate ARC simulations at
different cache sizes. As with fixed-rate SHARDS, the input
trace was filtered to select blocks that satisfied a hash-based
sampling condition, corresponding to the sampling rate R. A
series of separate simulations was run, each using a different
cache size, which was also scaled down by R. FIG. 10 pre-
sents results for the same VM disk trace as in FIG. 3, lever-
aging an open-source ARC implementation. For R=0.001, the
simulated cache capacity was only 0.1% of the desired cache
size, thus achieving huge reductions in both space and time,
while still exhibiting excellent accuracy, with an MAE of
0.01. This embodiment is simplified in the sense that it imple-
ments multiple cache policy simulations without needing the
data structures illustrated in FIG. 2; however, spatial sam-
pling, shown as block/component 310 in FIG. 2 and FIG. 12
(see below) is applied and the sampled references are fed into
multiple cache simulation instances, each of which executes

US 9,418,020 B2

17

aparticular caching algorithm of interest. Each instance pref-
erably has a different particular cache size, rescaled to reflect
the sampling rate.

Note that, in these embodiments, rescaling (step 360 in
FIG. 2) may involve, for example, the numbers of entries in a
simulated cache, as opposed to reuse distances, scaled down
by the sampling rate. The result is a set of discrete miss ratios
(or rates) corresponding to points on the CUC at particular
cache sizes. For example, with a sampling rate of
0.1% (=Y1000), a series of cache sizes (along the MRC x-axis)
can be sampled, each of which are also scaled down by a
factor of 1000. Note that the multiple simulations can option-
ally be run in parallel, e.g. feeding each sample that passes the
filter into each of several cache-simulation instances.

Other Applications of SHARDS, ,; Adjustment

The theory behind the corrective adjustment (E[N,]-N,)
described above may be extended to correct for sampling bias
in analyses of other properties as well. In general, the property
of interest in the original trace may be measured to yield an
“expected value”. This property may then be measured in the
sampled trace (the “actual value”) and a corresponding
adjustment may be computed and applied.

A similar adjustment technique may also be used with
non-LRU policies. Running a separate simulation for each
cache size on the MRC, one could also adjust the simulated
miss ratio directly (note that there would be no Mattson-style
reuse histogram in this case). For example, if the simulated
miss ratio is totalMisses/totalRefs, the system could add the
difference (E[N,]-N,) to both the numerator and denomina-
tor.

Comparison of SHARDS with Specific Prior Art

The figures and the related discussion above explain and
illustrate how SHARDS has proven to be not only highly
efficient, but also highly accurate in determining MRCs, even
under what, for prior art systems, would be conditions of
impossibly few samples, assuming such systems can work
with samples at all.

One known technique involves temporal sampling, which
reduces reference-tracking costs by only doing so some of the
time. For example, Berg, et al. (“StatCache: A Probabilistic
Approach to Efficient and Accurate Data Locality Analysis”,
Proceedings of the 2004 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS-
2004, Austin, Tex., USA, March 2004; and “Fast Data-Lo-
cality Profiling of Native Execution”, Proceedings of ACM
SIGMETRICS 2005, Banff, Canada, June 2005) sample
every Nth reference (in particular, one in every 10K) to derive
MRCs for caches. Bryan and Conte’s cluster sampling
(“Combining cluster sampling with single pass methods for
efficient sampling regimen design”, 25th International Con-
ference on Computer Design, ICCD 2007, 7-10 Oct. 2007,
Lake Tahoe, Calif., USA, Proceedings (2007), IEEE, pp.
472-479). RapidMRC (Tam, D. K., et al., “RapidMRC:
Approximating [.2 miss rate curves on commodity systems
for online optimizations”, Proceedings of the 14th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, New York, N.Y., USA,
2009, ASPLOS XIV, ACM, pp. 121-132) and work on low-
cost tracking for VMs (Zhao, W., et al., “Low cost working set
size tracking”, Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference, Berkeley, Calif.,
USA, 2011, USENIXATC’11, USENIX Association, pp.
17-19), by contrast, divide the execution into periods in which
references are either sampled or are not. They also tackle how
to detect phase changes that require regeneration of the reuse
distances. RapidMRC reports a mean average error rate of
1.02 misses per thousand instructions (MPKI) with a maxi-

15

20

30

40

45

50

18

mum of 6.57 MPKI observed. Zhao, et al., report mean rela-
tive errors of 3.9% to 12.6%. These errors are significantly
larger than what SHARDS achieves.

One challenge when sampling references is that reuse dis-
tance is a recurrent behavior. One known solution is to extract
a sample from the trace based on an identifying characteristic
of'its references. Spatial sampling uses addresses to select a
sample set. Content-based sampling does so by using data
contents. Both techniques can capture all events for a set of
references, even those that occur rarely. Many analyses for
set-associative caches have used set-sampling. For example,
UMONDSS (Qureshi, M. K., et al., “Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches”, Proceedings of the
30th Annual IEEE/ACM International Symposium on
Microarchitecture, Washington, D.C., USA, 2006, MICRO
39, IEEE Computer Society, pp. 423-432) reduces the cost of
collecting reuse-distances by sampling the behavior of a sub-
set of the sets in a processor cache. Hill et al. (“A comparison
of trace-sampling techniques for multimegabyte caches”,
IEEE Transactions on Computers 43, 1994, pp. 664-675)
compare temporal sampling, set-sampling and constant-bit
sampling of references and find that the last technique is most
useful when studying set-associative caches of different
dimensions. Many techniques targeting hardware implemen-
tations use grouping or spatial sampling to constrain their use
of space; however, these tend to focus on narrow problems
such as limited set associativity or limited cache size ranges
for each MRC.

Like these approaches, SHARDS reduces and bounds
space use, but unlike them, it models the full range of cache
sizes. In addition, these techniques do not report error rates.
Inspired by processor hardware for cache sampling, Wald-
spurger, et al., (see U.S. Pat. No. 8,694,728) proposed con-
structing an MRC by sampling a fixed set of pages from the
guest-physical memory of a VM. Unfortunately, practical
sampling requires using small (4 KB) pages, increasing the
overhead of memory virtualization. Choosing sampled loca-
tions up-front is also inefficient, especially for workloads
with large, sparse address spaces. In contrast, SHARDS does
not require any information about the address space. Xie, et
al., (“Estimating duplication by content-based sampling. In
Presented as part of the 2013 USENIX Annual Technical
Conference, USENIX ATC 13, San Jose, Calif., 2013,
USENIX, pp. 181-186) address a different problem: estima-
tion of duplication among blocks in a storage system. The
Xie, et al., system hashes the contents of blocks producing
fingerprints. These are partitioned into sets with one set cho-
sen as the sample. Their model has error proportional to the
sample-set size. This property is used to dynamically repar-
tition the sample so that the sample size is bounded. Xie, etal.,
looks at individual blocks” hash values and how these collide,
but, unlike SHARDS, fails to accurately capture the relation-
ship between pairs of accesses to the blocks.

A number of analytical models have been proposed to
approximate MRCs with reduced effort. By constraining how
blocks are replaced in a cache, Tay and Zou (“A page fault
equation for modeling the effect of memory size”, Perform.
Eval. 63, 2, February 2006, pp. 99-130) derive a universal
equation that models cache behavior from a small set of
sampled data points. He, et al., (“FractalMRC: Online cache
miss rate curve prediction on commodity systems”,
IPDPS’12, 2012, pp. 1341-1351) propose modeling miss
ratio curves as fractals and claim error rates of 7-10% in many
cases with low overhead. Berg, et al. (see reference above),
use a closed-form equation of the miss rate. Through a
sequence of sampling, deriving local miss rates and combin-

US 9,418,020 B2

19

ing these separate curves, they model caches with random or
LRU replacement. Others model cache behavior by tracking
hardware performance counters. Unlike such analytical
approaches, SHARDS estimates the MRC directly from the
sampled trace. The inventors have shown that SHARDS can
be implemented using constant space and with high accuracy.
Whereas the error of SHARDS is small, the analytic tech-
niques report errors of a few percent to 50%, with some
outliers at 100-200%.

Recently, Wires, et al., (“Characterizing storage workloads
with counter stacks. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementa-
tion”, Berkeley, Calif., USA, 2014, OSDI'14, USENIX Asso-
ciation, pp. 335-349) presented a new approximation tech-
nique for computing MRCs using a counter. Whereas
Mattson’s basic technique tracks reuse distances as counts of
unique references between repetitions, their “counter stack”
approach extends this in three ways. First, the counts of
repetitions, themselves, can be computed by comparing
changes in the number of unique references seen from difter-
ent starting points in the stream. The sequence of locations
observed by a newer counter is a proper sutfix of the sequence
recorded by an older one. So, if the newer counter increases
but the older does not, then the older location must have
repeated, and its reuse-distance is the older counter’s value.
Second, the repetitions and reuse-distances can be approxi-
mately efficiently using a bounded set of counters. Instead of
starting a new counter with every reference, one may down-
sample the set of counters, creating and tracking a new one
periodically. The set can be further pruned since, over time,
adjacent counters converge as they observe the same set of
elements. Using probabilistic counters based on the Hyper-
Loglog algorithm together with downsampling and pruning,
the counter stack approach uses only (log M) space. Third,
columns of counts in the counter stack can be periodically
written to a checkpoint together with timestamps for subse-
quent analysis. Checkpointed counterstack sequences can be
spliced, shifted temporally, and combined to model the
behavior of combinations of workloads. Because the check-
point captures only stacks of counts at each timestamp, such
modeling assumes that different checkpoints access disjoint
sets of blocks.

To provide a direct quantitative comparison with
SHARDS, the inventors generated the same merged “master”
MSR trace used by Wires, et al., configured identically with
only read requests and a 4 KB cache block size. FIG. 11 shows
MRCs constructed using fixed-size SHARDS, with 48K his-
togram buckets of size 64 MB, supporting cache sizes up to 3
TB. For s,,,,=8K, the average absolute error is 0.006 with
SHARDS,, ;;(0.029 unadjusted). The MRC is computed using
only 1.3 MB of memory in 137 seconds, processing 17.6 M
blocks/sec. Wires, et al., report that Counter Stacks requires
80 MB of memory, and 1,034 seconds to process this trace at
a rate of 2.3 M blocks/sec. In this case, Counter Stacks is
approximately 7x slower and needs 62x as much memory as
SHARDS,, ;. While Counter Stacks uses log M space, fixed-
size SHARDS computes MRCs in small constant space. As a
result, separate SHARDS instances can efficiently compute
multiple MRCs, tracking different properties or time-scales
for a given reference stream, which Wires, et al., claim is not
practical. Moreover, unlike Counter Stacks, SHARDS main-
tains the identity of each block in its sample set. This enables
tracking additional information, including access frequency,
making it possible to directly implement other policies such
as LFU, LIRS, ARC, CAR, or Clock-Pro, as discussed above.

10

15

20

25

30

35

40

45

50

55

60

65

20

System Implementation

FIG. 12 illustrates a representative system that implements
SHARDS embodiments. Depending on whether a fixed-rate,
or fixed-size embodiment, or both, that a user wishes to be
able to take advantage of, some of the components may not be
included. The various computational and other data-process-
ing steps described above, and illustrated in general in FI1G. 2,
are carried out my executing appropriate modules of com-
puter-executable code that may be stored, that is, embodied,
in any conventional non-transitory medium and will be
loaded into system memory for execution by the system pro-
cessor(s). Although several modules are shown as being sepa-
rate in FIG. 12, it would also be possible to combine some or
all of them into single bodies of code, which may then be
loaded as a unit.

One or more clients 100 (such as an application, a virtual
machine, a host, a hardware entity, some aggregation of any
or all of these, etc.) includes, by way of example, a system
100-1 that may include virtual machines 110 and/or other
applications 120 running on a hypervisor/operating system
130; as well as other clients 100-2, . . ., 100-x.

A primary system 400 includes at least one storage system
450, which may be of any type or configuration, from a single
disk to a mixed storage technology system spread over mul-
tiple servers and locations in the “cloud”. An access manage-
ment system 420, which may be a dedicated system or simply
the storage access components of a conventional server,
mediates /O operations with the storage system 450 and will
typically include one or more processors 430. In this example,
the primary system is shown as including a cache 440 (which
may be part of the processing system 430 itself) and a com-
ponent (software, firmware, etc.) 410 that manages cache
operations such as cache 440 partitioning (if implemented)
and allocation for entities, such as the clients 100, that issue
read and write requests to the storage device(s) 450. As is
mentioned below, however, some embodiments of the inven-
tion may help the administrator of the primary system decide
whether to include a cache at all.

The storage devices 450 may, but need not be located in the
same place (such as in a distributed “cloud” storage environ-
ment) and may be of any type, such as solid-state devices
(SSDs), including but not limited to flash drives, RAM-based
storage systems, or slower electromechanical storage sys-
tems. The storage devices may be of different technology
types, and may have any block or page size. The only assump-
tion is that there is some form of location identifier L that may
also be used to identify a corresponding cache entry ifthe data
at L is in fact cached.

The clients are any entities that address the storage system
450 either directly or, more likely, via one or more interme-
diate address translations. Depending on the chosen imple-
mentation, the clients may communicate data requests to one
or more cooperating servers via a bus, a network, or any other
communications channel, all of which are indicated collec-
tively by reference number 200. In some implementations, all
or some of the clients 100-1, . . . , 100-z (also referred to as
C1, ..., Cn for succinctness) may be incorporated into the
primary system 400 itself, in which case no network will
normally be needed for them. In the illustrated example, a
reference stream is issuing from client 100-1 for data at loca-
tions L. (For simplicity and clarity, any intermediate address
translations are ignored here.) This invention does not pre-
suppose any type of client, which may be any software and/or
hardware entity—or any combination of software and/or
hardware entities—that addresses the storage system 450 and
whose possible or actual need for cache allocation is to be
tested and, optionally, adjusted.

US 9,418,020 B2

21

In the embodiment illustrated in FIG. 12, only one of the
clients (100-1) is shown as transmitting a streams of reference
requests L. to access the storage system 450, but it is to be
understood that, in practice, any and usually all of the clients
will be doing so at the same time, in which case a cache
analysis system 300 can tap, segregate, and analyze each
stream separately, or treat all references from all clients as
simply parts of a single stream. The references (all or for only
designated clients) are passed to or tapped by the cache analy-
sis system 300, which may be free-standing or incorporated
into another system, including the primary system 400.

The cache analysis system 300 here includes a buffer/
storage component 305, which may be a hardware device
such as a flash memory, disk, RAM, access to an external
storage (even directly to the storage system 450), that stores
the location identifiers L. submitted by any or all of the clients
that one desires to construct a CUC for, as well as any or all of
the data structures described here.

In some implementations, the references (submission of
storage location identifiers L) of more than one, oreven all, of
the clients, for example, all of the VMs on a single host, may
be considered as a whole for analysis. In other cases, however,
cache analysis is preferably done per-client so as to be able to
construct a separate cache utility curve CUC for each client.
For per-client analysis, each reference may be tagged in any
known manner with a client identifier such that the respective
client’s references are segregated for storage and processing.
The storage component 305 may therefore segregate submit-
ted identifiers per-client, although it could also be arranged
through filtering that only one client’s identifiers are captured
and stored at a time for analysis.

The cache analysis system 300 will also include one or
more processors, system software, including some form of
operating system, as well as other conventional hardware and
software components used to access the reference stream, for
example by tapping the network/bus 200, to execute the code
that defines the various software modules, and to communi-
cate with any peripheral devices such as a display 500. These
are not shown in FIG. 12 merely for the sake of succinctness.

The cache analysis system 300 stores and, using known
methods, maintains the various data structures such as trees,
hash tables, lists, etc., that implement the hash table 320, the
distance tree 330, the histogram 340, and the set S 350. A
module 325 is included to perform the various computations
and data-processing steps described above and shown gener-
ally in FIG. 2.

The results of the analysis are made available to a cache
utility curve (CUC, such as an MRC or HRC) compilation
module 370, which may compile the results as per-client
statistics, for example, in value range bins such as are used to
form histograms; if a histogram presentation is preferred,
then it can optionally be taken directly from the histogram
structure 340. Particularly in implementations that are fully
automated, the per-client CUC(Ci) results may then be passed
to a workstation monitor 500, which can then display the
current CUC estimate, for example, either as a whole or for a
selected client. The monitor 500 may also be included to
allow a system administrator to communicate various param-
eters to the analysis system 300 to change the threshold T, the
modulus P, the selection of client(s) to analyze, etc. Other
parameters that an administrator might want to set and adjust
in the sampling module might be how often sampling and
MRC-construction should be done. Typical times might be on
the order of minutes or even hours, but the decision could also
be based on a large enough (determined by the administrator)
change in the number and/or type of clients that need to share

25

40

45

22

the cache. Of course, all such manual settings could also be
accomplished automatically by programming suitable heu-
ristic algorithms.

The CUC may also, or instead, be passed to the cache
manager 410, which then may then adjust, either under opera-
tor control or automatically, the current cache allocations for
the respective clients so as to improve the cache performance.

Note that it is not necessary to store the actual data associ-
ated with references, since the caching routine doesn’t
depend on the actual data contents, but rather only the loca-
tion alone and, depending on implementation, the size of the
cache line/block. Since the tag size is typically much smaller
than the data size, this would have the benefit of reducing the
memory footprint significantly.

Note that a single CUC (in particular, MRC) represents
miss/hit rates for an entire range of possible cache sizes. In
most implementations, the system (human operator or auto-
matic software module or both) will attempt to find some
optimal allocation setting for multiple clients. A single client
would of course have no competition for cache space at all;
nonetheless, the invention may also be useful in single-client
situations by providing cache-sizing information, which may
be useful for decisions relating to reallocation of unnecessary
cache space (for example in main memory or on an SSD) for
non-caching purposes. In a sense, the cache analysis system
and related method steps create a kind of simulated cache,
which simulates either an actual cache, such as cache 440, or
ahypothetical cache, such as for the purpose of system design
of'areal cache. Another example of a single-client implemen-
tation would thus be to simulate a single cache size in order to
determine, using a simulated hit ratio, whether, for example,
it would be advantageous to buy and install a cache card of
some given size.

An example of yet another possible use would be in clas-
sifying workload behavior, for example, to identify workload
types, such as “streaming” (no locality) or “small working
set”, etc. For automated cache allocation decisions, the cache
analysis system may compute the CUCs for different clients,
and then the cache manager 410 may choose an efficient
operating point (cache size) for each client that maximizes a
utility function, such as reducing aggregate misses (across all
clients) the most, or a priority-weighted function of miss rates
across clients, etc. The system may also attempt to find a point
or a range on the CUC that has been pre-defined as optimal in
some user-chosen sense.

For optimizing cache allocations across multiple clients,
some embodiments may also measure and use the number of
hits per unit time. For example, if the hit ratio for client A is
much higher than that for client B, but if B has many more
accesses than A, then allocating more cache to B (despite its
lower hit ratio) may save more total disk accesses over a given
time period. Hit rate information may be incorporated in any
known manner into the chosen allocation routine.

There are different design and purely administrative
choices when it comes to how often a CUC should be con-
structed for a given client or set of clients. In some cases,
static choices may be preferred, such as redoing the CUC-
compilation process every n minutes, or every day or hour, or
whenever a new client or number of clients enters the system,
when some other significant change to the workload is
detected, etc. In some other cases, such as where the CUC is
constructed online, it may be advantageous to include some
form of periodic reset or “aging” to weight more recent
accesses more than older accesses. For example, the system
could periodically age/decay per-histogram-bucket counts
by, for example, dividing the values by two or by applying a
decay factor, if such histograms or equivalent structures are

US 9,418,020 B2

23

used to compile miss statistics. Examples of other possible
aging techniques include using a moving average of values
and exponentially-weighted moving average (EWMA).

There are different ways to compile the set of location
identifiers used for sampling. One way would be for the cache
analysis system 300 to tap the location identifier stream [in
real time (either via a per-client filter or using segregated,
per-client storage) as in the embodiment of FIG. 12 and store
the corresponding addresses in the component 305. For
example, by interposing on the 1/O path in a live system,
SHARDS may be used to compute an up-to-date MRC
online, at any point in time. Assume, however, that a system
administrator (as opposed to the cache analysis system 300)
wishes to examine how best to allocate actual cache for a
given set of clients. The administrator could compile a log (a
“trace”) (total, or perhaps a subset, such as identifiers submit-
ted only by clients of interest) of the submitted location iden-
tifiers L and then transfer these to the storage component 305
of the cache analysis system 300 for processing. The log
could be transferred on a physical medium such as a disk,
flash drive, hard drive, etc., or by downloading over a net-
work, depending on the size of the log file and required
transfer speed. Compilation of the CUC may then be carried
out as before, on the basis of the location identifiers stored in
the component 305. The CUC can then be presented in any
desired manner, such as on the display of a monitor 500, or
sent to the administrator of the primary system 400 to help
him determine proper allocation of any actual cache used, or,
indeed, if there needs to be a cache at all.

As mentioned above, most implementations of the inven-
tion will want to determine cache utility curves per-client and
will consequently tag and/or segregate storage references for
each client so as to make separate processing more efficient.
In cases where one or more clients is a virtual machine, each
client may maintain and transmit a buffer of sampled loca-
tions L*, independent of its actual accesses to the real storage
system. This could be implemented, for example, via a filter
driver in the guest OS within a VM, or via a filter driver in the
hypervisor. For example, traces may be collected on each host
using block trace collection tool such as “ESX vscsiStats” in
VMware-based systems, which can collect separate traces for
VM virtual disks. The block trace tool could even be modified
itself to perform sampling to reduce the data that the hyper-
visor needs to send for cache analysis. Once the raw trace data
is extracted from the hypervisor, it could be sampled before
sending it off for analysis; alternatively, the entire trace
maybe sent off for analysis, with sampling applied later dur-
ing the analysis itself.

Examples of Options for Applications

Various uses of the different embodiments are mentioned
above, but are only a few of the large number of possibilities.
Some uses, such as cache sizing and cache parameter tuning,
do not require any changes to the cache itself. In systems that
have cache partitioning support, the invention can be used to
optimize aggregate performance or, for example to isolate
individual clients. The invention can even be used to support
“business-related” options, such as providing information
that can be used to better fulfill latency or throughput guar-
antees in Service Level Agreements (SLLAs). For example, the
invention may be used to help ensure that a set cache size or
allocation will ensure some statistical property for latency
distribution, such as average latency, n’th percentile, mini-
mum or even maximum latency.

With respect to cache sizing, the invention can be used to
support online recommendations, in which MRCs are inte-
grated with a storage controller or to tune and optimize cus-
tomer workloads. The MRCs could also be presented in a

10

15

20

25

30

35

40

45

50

55

60

65

24

storage management user interface, for example, to report
cache size to achieve a desired latency, to enable customers
and SEs to self-service sizing, to size an array cache in the
field, trigger upselling, etc.

The invention may also be used to help tune a cache policy,
for example, to quantify the impact of parameter changes
(e.g., cache block size, use of sub-blocks, write-through vs.
write-back, a replacement policy, etc.). The invention may
also make it possible for a user to explore different tuning
policies without having to modify his actual production
cache, for example, by simulating multiple configurations
concurrently, that is, in parallel, or multiple MRCs, each with
different parameters. Even dynamic, online optimization may
be enabled, for example, to determine a best configuration in
any user-defined sense and then to adjust the actual cache
parameters.

Various aspects of performance may also be improved or
optimized, including aggregate cache performance, partition-
ing cache across multiple clients, adapting the cache setting to
changing workloads, etc. The system designer or administra-
tor could, for example, allocate space based on client benefit
or so as to prevent inefficient space utilization. Optimized
partitioning could be used, for example, to isolate and control
competing LUNs, VMs, tenants, database tables, etc., to opti-
mize partition sizes using MRCs, etc.

CONCLUSION

The various embodiments of SHARDS provide a new
hash-based spatial sampling technique and related system
implementation for reuse-distance analysis that computes
approximate miss ratio curves accurately using only modest
computational resources. The approach may also be used,
with modifications that a skilled system programmer will
understand, to compute miss rate curves as well. The
approach is in many common circumstances so lightweight—
operating in constant space, and typically requiring several
orders of magnitude less processing than conventional algo-
rithms—that online MRC construction becomes practical.
Furthermore, SHARDS enables offline analysis for long
traces that, due to memory constraints, could not be realisti-
cally accomplished using exact techniques.

Experimental evaluation of SHARDS has demonstrated its
accuracy, robustness, and performance advantages, over a
large collection of /O traces from real-world production stor-
age systems. Quantitative results show that, for most work-
loads, an approximate sampled MRC that differs only slightly
from an exact MRC can be constructed in as little as 1 MB of
memory. Performance analysis highlights dramatic reduc-
tions in resource consumption, in some cases up to 10,800x in
memory and up to 204x in CPU.

We claim:
1. A method for evaluating interaction between a cache in
a computer system and at least one entity, where each entity
submits a stream of references, each reference corresponding
to a location identifier corresponding to data storage locations
in a storage system, the method comprising, for each of at
least one of the entities,
at a sampling rate, spatially sampling the stream of refer-
ences by:
selecting a threshold value;
computing a hash value for each reference;
comparing the hash value for each reference in the
stream with the threshold value and selecting only
those references whose hash value meets a selection
criterion;

US 9,418,020 B2

25

maintaining a sample set data structure having entries cor-
responding to the sampled references whose hash values
satisty the selection criterion;
compiling cache utility values for the sampled references
whose hash values satisfy the selection criterion;

computing a first statistic of the location identifiers that
meet the selection criterion over the entire stream of
references;
computing a second statistic for the sampled references
whose hash values satisfied the selection criterion; and

computing and applying to the compiled cache utility val-
ues a correction as a function of the difference between
the first and second statistics.

2. The method as in claim 1, further comprising rescaling
the entries as a function of the sampling rate before compiling
the cache utility values.

3. The method as in claim 1, further comprising computing
the first statistic as an expected value of the number of loca-
tion identifiers that meet the selection criterion over the entire
stream of references.

4. The method as in claim 1, in which the selection criterion
is that a modular arithmetic remainder of the hash value of the
reference lies in an acceptable range relative to the threshold
value.

5. The method as in claim 1, further comprising transfer-
ring the compiled cache utility values to a display unit for
display.

6. The method as in claim 1, further comprising compiling
the cache utility values in a format chosen from the group:
cache miss rate curve, cache hit rate curve, cache miss ratio
curve, and cache hit ratio curve.

7. The method as in claim 1, further comprising selecting a
size of the cache in the computer system in accordance with
the compiled cache utility values.

8. The method as in claim 1, further comprising:

repeating the step of spatially sampling for a plurality of

reference streams, using different sampling parameters;
compiling a set of cache utility values for each of the
reference streams; and

adjusting cache parameters in accordance with the sets of

cache utility values with respect to a user-selected opti-
mization criterion.

9. The method as in claim 1, further comprising:

repeating the step of spatially sampling for a plurality of

reference streams, each reference stream corresponding
to a different one of the entities, each of which is asso-
ciated with a corresponding cache partition;

compiling a set of cache utility values for each of the

reference streams; and

adjusting the cache partitions in accordance with the sets of

cache utility values with respect to a user-selected opti-
mization criterion.

10. The method as in claim 1, further comprising:

selecting, based on the compiled cache utility values, a

desired cache characteristic; and

configuring the cache to have the selected desired cache

characteristic.

11. The method as in claim 10, in which the cache charac-
teristic is cache size.

12. The method as in claim 10, in which the cache charac-
teristic is cache partitioning.

13. The method as in claim 10, in which the desired cache
characteristic is cache block size.

14. The method as in claim 10, in which the desired cache
characteristic corresponds to a predetermined latency mea-
sure.

10

25

30

35

40

45

50

60

26

15. The method as in claim 10, in which the desired cache
characteristic corresponds to a minimum I/O throughput.

16. The method as in claim 1, further comprising comput-
ing a miss-ratio curve from the compiled cache utility values.

17. The method as in claim 1, further comprising comput-
ing a miss-rate curve from the compiled cache utility values.

18. The method as in claim 1, further comprising accumu-
lating the cache utility values into histogram value range bins.

19. The method as in claim 18, further comprising deter-
mining a reuse distance measure for each reference whose
hash value satisfied the selection criterion and storing, in a
distance data structure, an indicator of each such reference,
said histogram value bins representing respective ranges of
the reuse distances.

20. The method as in claim 19, further comprising:

selecting a maximum size for the distance data structure;

detecting that the size of the distance data structure has
exceeded the maximum size;

removing from the distance data structure a number of

entries necessary to reduce the number of entries such
that a resulting size of the sample set data structure is no
more than the maximum size; and

adjusting the threshold value such that the entries in the

distance data structure still meet the selection criterion
but the removed entries do not.
21. The method as in claim 18, further comprising
computing the first statistic as an expected value of the
number of location identifiers that meet the selection
criterion over the entire stream of references; and

adjusting the values of at least one of the histogram value
range bins by the correction.

22. The method as in claim 21, in which the first statistic is
a number of location identifiers expected to have a predeter-
mined caching property and the second statistic is the mea-
sured number of location identifiers that meet the selection
criterion.

23. The method as in claim 21, further comprising adjust-
ing more than one of the histogram value range bins by the
correction.

24. The method as in claim 21, further comprising adjust-
ing only a first one of the histogram value range bins by the
correction.

25. The method as in claim 21, further comprising com-
puting the expected number as a product of a total number of
references in the stream times the sampling rate.

26. The method as in claim 18, further comprising:

determining a total number (Nt) of references in the

stream;

determining a total (Mt) and a sampled number (Ms) of

unique references in the stream;

determining a total number (Ns) of sampled references in

the stream as a function of the sum of the values in the
histogram bins;

computing a correction as a function of Nt, Ns, Mt and Ms;

and

adjusting the values of the histogram value range bins by

the correction.

27. The method as in claim 26, in which the correction is a
function of (Nt*Ms-Mt*Ns)/Mt.

28. A method for evaluating interaction between a cache in
a computer system and at least one entity, said entity submit-
ting a stream of references, each reference corresponding to a
location identifier corresponding to data storage locations in
a storage system, the method comprising:

US 9,418,020 B2

27

spatially sampling, at a sampling rate, the stream of refer-

ences by:

selecting a threshold value;

computing a hash value for each reference;

comparing the hash value for each reference in the
stream with the threshold value and selecting only
those references whose hash value meets a selection
criterion;

selecting a plurality of caching configurations;

applying the selected references as inputs to a plurality of

caching simulations each corresponding to a respective
one of the caching configurations, and computing a
resulting, respective set of cache utility values for each
caching simulation.

29. The method as in claim 28, in which each caching
configuration is a respective cache size.

30. The method as in claim 28, further comprising selecting
a size of the cache in the computer system by determining an
optimal size from the compiled cache utility values for the
respective caching configurations.

31. The method as in claim 28, in which the caching simu-
lation applies to the reference stream a least recently used
(LRU) replacement policy.

32. The method as in claim 28, in which the caching simu-
lation applies to the reference stream a low inter-reference
recency set (LIRS) replacement policy.

33. The method as in claim 28, in which the caching simu-
lation applies to the reference stream a self-tuning, low over-
head replacement cache (ARC).

34. The method as in claim 28, in which the caching simu-
lation applies to the reference stream a clock with adaptive
replacement (CAR) policy.

35. The method as in claim 28, further comprising com-
puting the different sets of cache utility values in parallel.

36. A cache analysis system for evaluating interaction
between a cache in a computer system and at least one entity,
each entity submitting a stream of references, each reference
corresponding to a location identifier corresponding to data
storage locations in a storage system, the cache analysis sys-
tem comprising computer-executable code embodied in non-
transitory storage medium, said code, when executed on a
processor within the cache analysis system, causing the pro-
cessor:

to spatially sample, at a sampling rate, the stream of refer-

ences by:

computing a hash value for each reference; and

comparing the hash value for each reference in the
stream with a threshold value and selecting only those
references whose hash value meets a selection crite-
rion;

to maintain a sample set data structure having entries cor-

responding to the sampled references whose hash values
satisty the selection criterion;

to compile cache utility values for the sampled references

whose hash values satisfy the selection criterion;

to compute a first statistic of the location identifiers that

meet the selection criterion over the entire stream of
references;
to compute a second statistic for the sampled references
whose hash values satisfied the selection criterion; and

to compute and apply to the compiled cache utility values
a correction as a function of the difference between the
first and second statistics.

37. The system as in claim 36, in which the cache analysis
system is further configured for rescaling the entries as a
function of the sampling rate before compiling the cache
utility values.

20

35

40

45

50

55

65

28

38. The system as in claim 36, in which cache analysis
system is further configured for computing the first statistic as
an expected value of the number of location identifiers that
meet the selection criterion over the entire stream of refer-
ences.

39. The system as in claim 36, in which the selection
criterion is that a modular arithmetic remainder of the hash
value of the reference lies in an acceptable range relative to
the threshold value.

40. The system as in claim 36, further including a cache
utility curve module, embodied as corresponding code
executable on the processor, provided for transferring the
compiled cache utility values to a display unit for display.

41. The system as in claim 36, wherein the compiled cache
utility values are adapted for presentation in a format chosen
from the group: cache miss rate curve, cache hit rate curve,
cache miss ratio curve, and cache hit ratio curve.

42. The system as in claim 36, further including a cache
utility curve module, embodied as corresponding code
executable on the processor, provided for transferring the
compiled cache utility values to a cache management sub-
system that is provided for selecting a size of the cache in the
computer system in accordance with the compiled cache util-
ity values.

43. The system as in claim 36, wherein the executable code
further causes the processor to spatially sample a plurality of
reference streams, using different sampling parameters and to
compile a set of cache utility values for each of the reference
streams.

44. The system as in claim 36, wherein the executable code
further causes the processor

to repeat spatial sampling for a plurality of reference

streams, each reference stream corresponding to a dif-
ferent one of the entities, each of which is associated
with a corresponding physical cache partition; and

to compile a set of cache utility values for each of the

reference streams, whereby a user may adjust the cache
partitions in accordance with the sets of cache utility
values with respect to a user-selected optimization cri-
terion.

45. The system as in claim 36, wherein the processor is
provided to convert the compiled cache utility values into a
cache miss-ratio curve.

46. The system as in claim 36, wherein the processor is
provided to convert the compiled cache utility values into a
cache miss-rate curve.

47. The system as in claim 36, further comprising a histo-
gram data structure stored within the cache analysis system,
said histogram data structure accumulating the cache utility
values into histogram value range bins.

48. The system as in claim 47, in which the processor is
provided to compute a reuse distance measure for each ref-
erence whose hash value satisfied the selection criterion and
to store, in a distance data structure stored within the cache
analysis system, an indicator of each such reference, said
histogram value bins representing respective ranges of the
reuse distances.

49. The system as in claim 48, in which the processor is
provided to:

detect that the distance data structure has exceeded a maxi-

mum size;

to remove from the distance data structure a number of

entries necessary to reduce the number of entries such
that a resulting size of the distance data structure is no
more than the maximum size; and

US 9,418,020 B2

29

to adjust the threshold value such that the entries in the
distance data structure still meet the selection criterion
but the removed entries do not.

50. The system as in claim 47, wherein the cache analysis
system is configured

for computing the first statistic as an expected value of the

number of location identifiers that meet the selection
criterion over the entire stream of references; and

for adjusting the values of at least one of the histogram

value range bins by the correction.

51. The system as in claim 50, in which the first statistic is
a number of location identifiers expected to have a predeter-
mined caching property and the second statistic is the mea-
sured number of location identifiers that meet the selection
criterion.

52.The system as in claim 50, wherein more than one of the
histogram value range bins is adjusted by the correction.

53. The system as in claim 50, wherein only a first one of
the histogram value range bins is adjusted by the correction.

54. The system as in claim 50, in which the expected
number is computed as a product of a total number of refer-
ences in the stream times the sampling rate.

55. The system as in claim 47, further comprising execut-
able code that, when executed by the processor, causes the
processor:

to determine a total number (Nt) of references in the

stream;

to determine a total (Mt) and a sampled number (Ms) of

unique references in the stream;

to determine a total number (Ns) of sampled references in

the stream as a function of the sum of the values in the
histogram bins;

to compute a correction as a function of Nt, Ns, Mt and Ms;

and

to adjust the values of the histogram value range bins by the

correction.

56. The system as in claim 55, in which the correction is a
function of (Nt*Ms—Mt*Ns)/Mt.

57. A cache analysis system for evaluating interaction
between a cache in a computer system and at least one entity,
each entity submitting a stream of references, each reference

10

15

20

25

30

35

40

30

corresponding to a location identifier corresponding to data
storage locations in a storage system, the cache analysis sys-
tem comprising computer-executable code embodied in non-
transitory storage medium, said code, when executed on a
processor within the cache analysis system, causing the pro-
cessor:

to spatially sample, at a sampling rate, the stream of refer-

ences by:

computing a hash value for each reference;

comparing the hash value for each reference in the
stream with a threshold value and selecting only those
references whose hash value meets a selection crite-
rion;

to apply the selected references as inputs to a plurality of

caching simulations each corresponding to a respective
one of a plurality of caching configurations, and to com-
pute a resulting, respective set of cache utility values for
each caching simulation.

58. The system as in claim 57, in which each caching
configuration is a respective cache size.

59. The system as in claim 57, further comprising a cache
manager in the computer system, wherein the processor fur-
ther computes a size of the cache in the computer system by
determining an optimal size from the compiled cache utility
values for the respective caching configurations.

60. The system as in claim 57, in which the caching simu-
lations apply to the reference stream a least recently used
(LRU) replacement policy.

61. The system as in claim 57, in which the caching simu-
lations apply to the reference stream a low inter-reference
recency set (LIRS) replacement policy.

62. The system as in claim 57, in which the caching simu-
lations apply to the reference stream a self-tuning, low over-
head replacement cache (ARC).

63. The system as in claim 57, in which the caching simu-
lations apply to the reference stream a clock with adaptive
replacement (CAR) policy.

64. The system as in claim 57, in which the processor is
provided for computing the different sets of cache utility
values in parallel.

